Expected Prior Knowledge before you begin Biochemistry I & II

Profs. Liu, Szymczyna, Tolan

The following terms and concepts are those with which you should be familiar BEFORE you begin biochemistry training. Other than the first exam and the Molecular Biology Quiz (see below), you will not be tested on these topics *per se*, however; their use and understanding will be expected. In many cases, these topics will be reviewed in the context of biological molecules and structures. For example, while you may have heard about a hydrogen bond, it will be extensively expanded on and put in the context of macromolecules in these courses. This is <u>not</u> an exhaustive list, but just meant to summarize the many key terms and skills you will need to build on.

Should you need a refresher on any of these terms, there are many online resources that are available to you. For chemistry, you can access <u>libre chemistry</u>. Likewise for biology, you can access <u>libre biology</u>.

Molecular Biology Quiz: Available on the lab Blackboard site will be links to a lecture that reviews the essential concepts of molecular biology and the so-called Central Dogma. Also there will be a link to a 30 min quiz on this material. This quiz will count towards your grade (1-2%) and must be completed by September 15.

Basic Chemistry:

Atomic Number

Dalton/Atomic Mass Unit

Electronegativity

Ionization

Formal charge

Mass Number

Metal, Transition metals

Nonmetal

Oxidation State

Periodic Table

Avogadro's number

Introductory Biology

Endocytosis

Exocytosis

Cytoskeleton

Cell nucleus

Endoplasmic reticulum, rough and smooth

Endosomes, vesicles

Enzymes

Eukaryotic

Prokaryotic

Golgi

Apparatus

Lumen

Lysosomes

Introductory Biology (continued)

Mitochondria

Matrix, Intermembrane space

Inner membrane

Outer membrane

Chloroplasts;

Chlorophyll

Thylakoid

Stroma

Organelles

Photosynthesis

Plasma membrane

Prokaryotic

Ribosome

Secretory granules

Transport

Osmosis

Replication

Transcription

Translation

See Molecular Biology Quiz

Chemical Bonding:

Anion

Cation

Chemical Bonding (continued): Covalent Bond (single, double, triple) Pi-Bond Sigma Bond Covalent bond Coordinate Polar Dipole moment Hybrid orbitals (sp^3, sp^2, sp) Hydrogen bond Ionic bond, Polar bonds Ionic interaction Coulomb's law Lewis structure **London Dispersion Forces** Lone Pair electrons Electronic and Molecular Geometries Linear, Tetrahedral, Trigonal planar, Trigonal pyramidal, Bent Valence electrons **Chemical Reaction Principles:** Balanced Chemical reaction Enthalpy Entropy Free energy Equilibrium constant (K_{eq}) Concentration; Mole, Molarity Le Chatelier's principle Mass action Endothermic

Organic Chemistry:

Calorie (cal, kcal, Cal)

Reaction order $(0, 1^{st}, 2^{nd})$ Rate constants $(k_1, k_{-1}, \text{ etc.})$

Exothermic Joule (J, kJ)

Catalyst Reaction rate

Acyl group Aliphatic Alkenes Alkyl group Alkynes Aromatic Carbocation, carbonium ion Carbo-anion, carbanion Functional group Alcohol (primary, secondary, tertiary) Aldehyde

Organic Chemistry (continued):

Amide Amine

Carbonyl group

Carboxylic acid/Carboxylate

Disulfide Ester Ether

Hemiacetal/Hemiketal

Ketone

Sulfhydryl (thiol)

Hydrocarbons

saturated (aka alkanes)

substituted unsaturated aromatic cyclic conjugated Hydrophilic Hydrophobic

Hydration reaction

Hydrogenation reaction

Isomers (geometric, positional, stereo)

Tautomer Leaving groups Electrophile Nucleophile Nucleophilic Attack

Resonance hybrid R and S configurations SN1 and SN2 reactions

Chemical Reactions:

Acid-base reaction

Displacement reaction

Elimination reaction

Oxidation and Reduction reaction

Oxidation and Reduction half-reactions Oxidation potentials

Oxidizing and Reducing agents REDOX reaction

Standard reduction potential Substitution (Displacement) reaction

μH

Aqueous Buffers

Brønsted-Lowry acids and bases Conjugate acid or base

Acid Dissociation constant (Ka) Henderson Hasselbalch equation Lewis acids and bases

Strong acid or base Weak acid or base

Describe the organic chemistry mechanisms of:

Amide/ester condensation from amine/alcohol and carboxylic acid Amide/ester hydrolysis into amine/alcohol and carboxylic acid

Hemiacetal (hemiketal) isomerization from an aldehyde (ketone) and alcohol

Acetal (ketal) condensation from a hemiacetal (hemiketal) and alcohol

Chemistry Skills You Must Have

(We will briefly review over most of them, though)

• Conversions between standard measurements:

```
mega, M - 10^6 kilo, k - 10^3 milli, m - 10^{-3} micro, \mu - 10^{-6} nano, n - 10^{-9} pico, p - 10^{-12} femto, n - 10^{-15}
```

- Calculate pH from [H⁺] or [OH⁻]
- Use Henderson-Hasselbalch equation to calculate pH, pK_a or the concentrations of acid and conjugate base
- Given three of temperature, enthalpy, entropy or free energy, calculate the fourth term. Balance chemical equations
- Set up the equilibrium equation for a reaction
- Given the initial concentrations of reactants and the equilibrium constant, calculate the concentrations of reactants and products at equilibrium.
- Calculate the equilibrium constant when given the concentrations of reactants and products at equilibrium.
- Interconvert between standard free energy and equilibrium constants Calculate reduction potentials and free energies of REDOX reactions Determine oxidation numbers for atoms in a molecule
- Assign R and S configurations to chiral carbons
- Describe the effect of oxidizing and reducing agents on organic molecules, and the relationships between alkanes, alkenes, alcohols, aldehydes, ketones, and carboxylic acids